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ABSTRACT 14 

Condensed tannins (CTs) account for up to 20% of the dry matter in forage legumes used as 15 

ruminant feeds. Beneficial animal responses to CTs have included improved growth, milk and 16 

wool production, fertility, and reduced methane emissions and ammonia volatilization from 17 

dung or urine. Most important is the ability of such forages to combat the effects of gastro-18 

intestinal parasitic nematodes. Inconsistent animal responses to CTs were initially attributed to 19 

concentration in the diet, but recent research has highlighted the importance of their molecular 20 

structures, as well as concentration, and also the composition of the diet containing the CTs. 21 

The importance of CT structural traits cannot be underestimated. Interdisciplinary research is 22 

the key to unraveling the relationships between CT traits and bioactivities, and will enable 23 

future on-farm exploitation of these natural plant compounds. Research is also needed to 24 

provide plant breeders with guidelines and screening tools to optimize CT traits, in both the 25 

forage and the whole diet. In addition, improvements are needed in the competitiveness and 26 

agronomic traits of CT-containing legumes and our understanding of options for their inclusion 27 

in ruminant diets. Farmers need varieties that are competitive in mixed swards and have 28 

predictable bioactivities. This review covers recent results from multidisciplinary research on 29 

sainfoin, and provides an overview of current developments with several other tanniniferous 30 

forages. Tannin chemistry is now being linked with agronomy, plant breeding, animal nutrition 31 

and parasitology. The past decade has yielded considerable progress, but also generated more 32 

questions; an enviable consequence of new knowledge!  33 

 34 
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Despite the wide-spread occurrence of condensed tannins (CTs) in the Plant Kingdom (Fig. 1), 94 

there are still large gaps in our knowledge that continue to challenge plant breeding, animal 95 

science and analytical chemistry; progress in all of these disciplines is needed in order 96 

understand the mechanisms that underpin their actions and to fully exploit their benefits.  97 

 98 

Figure 1  – here 99 

 100 

This review focuses on progress achieved during the past decade and considers the following 101 

topics:  102 

i) bioactive CTs in plants in general and forage legumes in particular;  103 

ii) intra- and inter-species variations in CT contents and composition, which will be termed CT 104 

traits from here on;  105 

iii) effects of agronomic, harvesting and processing practices on CT efficacies;  106 

iv) effects on animal health, nutrition, product quality and environmental emissions, plus  107 

v) characteristics useful for plant breeders and tools for selecting or engineering forages with 108 

novel CT traits.  109 

This review also summarizes results from a multi-disciplinary research consortium that focused 110 

on sainfoin (Fig. 2). In this project, agronomists and plant breeders assembled germplasm 111 

collections of sainfoin, which is a traditional forage legume in Europe, and identified molecular 112 

markers and strategies for weed control. Ruminant nutritionists studied various accessions for 113 

their in vitro fermentation characteristics and in vivo feeding trials, nitrogen balances and the 114 

quality of meat and dairy products. Parasitologists explored the anti-parasitic properties of a 115 
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wide range of CT traits and chemists developed tools for analyzing the CTs in sainfoin pellets, 116 

silages and digesta. 117 

Figure 2 – here 118 

 119 

The background to this work was the pioneering research in New Zealand that first studied 120 

fresh sainfoin (Onobrychis viciifolia Scop.) and Lotus spp in relation to legume bloat and 121 

nutritive value (Reid et al., 1974). Sainfoin research included measurements of the protein 122 

binding characteristics of condensed tannins (CTs, Fig. 1) (Jones and Mangan, 1977) and aspects 123 

of nitrogen digestion in sheep (Egan and Ulyatt, 1980), but problems with sainfoin persistence 124 

in swards diverted attention to Lotus species. Initial research by Barry and colleagues focused 125 

on big trefoil (Lotus pedunculatus Cav.) examining effects of CT concentration (Barry et al., 126 

1986), while Waghorn et al. (1987) demonstrated the beneficial effects of CTs in birdsfoot 127 

trefoil (Lotus corniculatus L. var. corniculatus) on absorption of essential amino acids from the 128 

intestine. Other forages were also evaluated in New Zealand, including sulla (Hedysarum 129 

coronarium L.; Stienezen et al., 1996) and dock (Rumex obtusifolius L.; Waghorn and Jones, 130 

1989), but the importance of CT composition, in addition to concentration, was demonstrated 131 

more recently (Waghorn et al., 1997). Subsequent research included CT effects on livestock 132 

parasites and greenhouse gas emissions, but financial support decreased because of a lack of 133 

competitiveness of tanniniferous forages, especially in fertile soils. It also became apparent that 134 

detailed chemical characterization was required to elucidate mechanisms of action, because 135 

the two Lotus species differed in their biological effects and tannin types. The question was: 136 

‘were their CTs responsible for these different biological effects?’ 137 
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 138 

This review seeks to provoke discussion on how to progress this area of research, how to 139 

optimize the bioactivity of CT-forages and how to develop on-farm applications. It will also 140 

consider whether farmers might require plants with different CT traits for either anti-parasitic 141 

or nutritional purposes. The reader is also referred to the accompanying article by Zeller (2017) 142 

for a detailed description of CT structures and the review by Tedeschi et al. (2014) for a 143 

mechanistic model describing the overall interactions between CTs and ruminants.  144 

 145 

ROLES OF TANNINS IN PLANTS AND CHALLENGES TO HARNESSING THEIR BENEFITS FOR 146 

LIVESTOCK PRODUCTION 147 

The reader of the tannin literature is repeatedly reminded that tannins are ‘secondary’ plant 148 

metabolites and provide a defence against herbivory (Lattanzio et al., 2012; Barbehenn and 149 

Constabel, 2011; Agrawal et al., 2012). However, herbivores comprise a range of species, from 150 

insects to ruminants, and have distinctly different gut systems. Whilst tannins can account for 151 

anti-herbivory effects in insects (Salminen and Karonen, 2011), ruminant behavior suggests 152 

their herbivory effect is marginal because forages containing CTs are consumed, and selection is 153 

often in preference to grasses (Waghorn, 2008). Within plants, leaves are selected in 154 

preference to stems despite higher CT concentrations, even when CTs accounted for about 20% 155 

of the dry matter in erect canary ‘clover’ (Dorycnium rectum (L.) Ser.) leaf (Waghorn and Molan, 156 

2001). Current thinking suggests that these secondary metabolites provide plants with a 157 

plasticity that can support their development and interaction with the environment (Mouradov 158 

and Spangenberg 2014; Neilson et al., 2013; Bidel et al., 2010). This concept, that CTs may have 159 
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multiple and inter-related functions, is now gaining traction. For example, Chen et al. (2014) 160 

showed that the temperatures experienced by the mother plant elicit CT pathways that can 161 

pass information to the next generation. In addition, the flavan-3-ol monomers, which are 162 

precursors of CTs, appear to play a vital role in protecting chromosomes during periods of high 163 

cell activity, but not during dormancy or drought stress (Feucht et al., 2013). It is important to 164 

appreciate that a multitude of different CT compounds exists (Zeller 2017; Salminen and 165 

Karonen 2011, Hümmer and Schreier 2008; Khanbabaee and van Ree 2001) and that their 166 

synthesis in the Plant Kingdom has not converged on a single structure. These findings suggest 167 

that the function of CTs deserves a closer look in plant and crop science. 168 

 169 

From an animal’s perspective, when dietary CT concentrations are too high, or protein 170 

concentrations too low, as in tropical environments where grasses may have little nitrogen and 171 

tree leaves may have high CT concentrations, CTs can be anti-nutritional (Cooper et al., 1988). 172 

The benefits of CTs have been demonstrated in only a few CT-containing feeds with ruminant 173 

animals, e.g. sheep, goats and cattle (Mueller-Harvey 2006; Waghorn, 2008). The nutritional 174 

benefits include improved growth, milk yields, fertility and tolerance to some intestinal 175 

parasites and arise from protection of dietary protein from excessive fermentation in the 176 

rumen. Other benefits include bloat prevention, which is associated with tannins reducing the 177 

stability of a foam that traps ruminal fermentation gases, and anti-parasitic effects against 178 

ruminant and non-ruminant GI parasites (MacAdam and Villalba 2015; Hoste et al 2015 and 179 

2016; Terrill et al., 2012; Wang et al., 2012; Kingston-Smith et al., 2010; Waghorn 2008).  180 

 181 
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Although plants synthesize many different tannin types, this review will focus on CTs, as these 182 

are of particular interest in forage legumes and several other pasture plants. Hydrolysable 183 

tannins are not considered here, although evidence is emerging that some may exert similarly 184 

useful bioactive effects (Bee et al., 2017; Engström et al., 2016; Baert et al., 2016). 185 

 186 

A major impetus for research and utilization of CT-forage legumes by livestock producers has 187 

been the drive to reduce bloat, to improve farm profitability, to control parasites and to reduce 188 

greenhouse gas  and ammonia emissions (Hoste et al., 2015; McCaslin et al., 2014; Wang et al., 189 

2012; Kingston-Smith et al., 2010). Nutritional responses to CTs have been variable and this has 190 

led to contradictory reports about their benefits (Waghorn, 2008; Mueller-Harvey, 2006; Min et 191 

al., 2003). This is not surprising given the complexity of plant CTs, their impact when forages are 192 

fed as a sole diet or as a dietary component and their interactions with feed components, host 193 

tissues and the microbiome plus the effects stemming from the animal’s nutrient requirements 194 

and parasitism. A concerted multidisciplinary research approach is required to harness the full 195 

potential of CTs for livestock production (Waghorn 2008; Mueller-Harvey 2006). However, 196 

obtaining funding for such a wide ranging set of topics has been challenging and reflects 197 

common barriers to interdisciplinary research, such as narrowly focused funding goals and 198 

short funding timelines. Progress in the study of complex plant-livestock systems is inherently 199 

slow, and CTs also pose interesting analytical and experimental challenges. Taken together, 200 

these facts account for the relatively slow progress in identifying the relationships between CT 201 

traits and bioactivities. 202 

 203 
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CHALLENGES AND OPPORTUNITIES POSED BY PLANTS WITH DIFFERENT CT TYPES 204 

Research on plant CTs has come a long way since the early literature described these 205 

compounds of mysterious composition and function as ‘accidents of [plant] metabolism’ or 206 

metabolic ‘waste products’ that served to support the primary plant metabolism (Haslam 207 

1981). It is now well established that CT synthesis is under genetic control (Francisco et al., 208 

2014; Cheynier et al., 2013; Scioneaux et al., 2011; Szczyglowski and Stougaard 2008) and 209 

expression depends on the plant species and plant parts (Chezem and Clay 2016; Zhou et al., 210 

2015; Zhu et al., 2015; Pérez-Díaz et al., 2014; Cheynier et al., 2013; Harding et al., 2013; 211 

Ferreyra et al., 2012; Mouradov and Spangenberg 2014; Abeynayake et al., 2012; Hancock et 212 

al., 2012; Verdier et al., 2012; Gebrehiwot et al., 2002; Larkin et al., 1997). 213 

 214 

Chemotaxonomic surveys on the distribution of CTs in plants in general and of forage legumes 215 

in particular have found that CT compositions tend to follow distinct biosynthetic patterns in 216 

terms of their flavan-3-ol subunit composition and polymer sizes, which are described in terms 217 

of mean degree of polymerization (mDP). Plants with procyanidin-type CTs are much more 218 

wide-spread than plants with prodelphinidin-type CTs (Fig. 1), but many more plant species 219 

contain procyanidin-prodelphinidin mixtures (Ropiak et al., 2016a; Hoste et al., 2016; 220 

Laaksonen et al., 2015; Quijada et al., 2015; Mechineni et al., 2014; Sivakumaran et al., 2006; 221 

Mueller-Harvey 2006; Porter 1988). Most plant CTs have cis-flavan-3-ol subunits, especially as 222 

extension units (Fig. 1), whilst CTs with predominantly trans-flavan-3-ol subunits in extension 223 

units are relatively rare (Klongsiriwet et al., 2013; Hernes and Hedges 2004; Porter 1988). We 224 

have also observed other trends in the composition of CTs in forage legumes, which are 225 
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illustrated with examples from a few plants that are ‘specialists’ in producing particular CT 226 

types:  227 

• CTs that comprise procyanidins tend to be mixtures of oligomers and smaller polymers; 228 

e.g. cocoa (Theobroma cacao L.) bean CTs with mDP values of 2 to 5.  229 

• CTs that comprise prodelphinidins are usually mixtures of larger polymers; e.g. sericea 230 

lespedeza (Lespedeza cuneata (Dum. Cours.) G. Don) CTs with mDP values of 10 to 30.  231 

However, exceptions exist as lime tree flowers (Tilia L. spp.) and some varieties of cider apples 232 

(Malus  domestica Borkh.) have procyanidins with higher mDP values of 8 and ~100, 233 

respectively (Ropiak et al., 2017; Guyot et al., 2001a).  234 

Other sources of special CT types include: 235 

• Leaves from several willow (Salix sp.) accessions and black currant (Ribes nigrum L.) 236 

have high proportions of procyanidins and prodelphinidins with  trans-flavan-3-ol 237 

subunits, respectively (Porter 1988).  238 

• Tea (Camellia sinensis (L.) Kuntze) leaves and shea (Vitellaria paradoxa C. F. Gaertn.) 239 

nuts are unusual in having high proportions of galloylated flavan-3-ol monomers and 240 

galloylated low molecular weight prodelphinidins (Ramsay et al., 2016; Henning et al., 241 

2003).  242 

• Water dock (Rumex hydrolapathum Huds.) roots and persimmon (Diospyros kaki 243 

Thunb.) fruits contain highly galloylated smaller procyanidins (mDP = 6; galloylation = 244 

52%; Ropiak et al., 2016a) and larger prodelphinidins (mDP = 26; galloylation = 72%; Li et 245 

al., 2010), respectively.  246 
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• An entire series of oligomeric and polymeric procyanidin xylosides are present in birch 247 

(Betula pendula Roth) bark (Liimatainen et al., 2012). 248 

 249 

Not surprisingly, these biosynthetic patterns can generate contradictory and confounding 250 

effects when attempting to align CT structure with bioactivity (Hixson et al., 2016; Laaksonen et 251 

al., 2015). However, the particular CTs in these ‘specialist’ plants can provide unique 252 

opportunities for research, because it would be very difficult to separate sufficient quantities of 253 

a particular CT type from the complex CT mixtures, which are typical of most plants, for 254 

laboratory or in vitro studies. This problem is illustrated by the CT mixtures in different sainfoin, 255 

sericea lespedeza and Lotus accessions (Table 1), in which the procyanidin:prodelphinidin ratios 256 

ranged from 84:16 to 3:97, cis-:trans-flavan-3-ol ratios from 90:10 to 66:34 and mDP values 257 

from of 12 to 84 (Mechineni et al., 2014; Azuhnwi et al., 2013a; Stringano et al., 2012; Meagher 258 

et al., 2004). 259 

 260 

An alternative approach is to use CTs from ‘CT specialist plants’. The already ‘pure’ groups of 261 

either procyanidins or prodelphinidins, having either cis- or trans-flavan-3-ol stereochemistry, 262 

can be isolated from these specialist plants, and separated in the laboratory into mDP variants 263 

and used to explore the bioactivities of different procyanidin:prodelphinidin ratios, cis-:trans-264 

flavan-3-ol ratios and polymer sizes (Brown et al., 2017). Currently, this is the most 265 

straightforward approach to structure-activity studies, because chemical synthesis of CTs is 266 

even more challenging. 267 

 268 
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Another aspect of CT composition that is poorly researched concerns the galloylated CTs. This is 269 

a group of particularly potent anti-oxidants (Fig. 1; Li et al., 2010) that appear to possess strong 270 

anti-parasitic, nematocidal and antimicrobial activities, but have received little attention for 271 

their nutritional or health effects (Brunet and Hoste 2006; Ropiak et al., 2016b). Acacia nilotica 272 

(L.) Delile leaves, carob (Ceratonia siliqua L.) pods, grape (Vitis vinifera L.) seeds, persimmon 273 

fruits, lentisk (Pistacia lentiscus L.) leaves, shea nuts, tea leaves, Rumex sp are good sources of 274 

galloylated CTs (Ramsay et al., 2016; Ropiak et al., 2016a; Derksen et al., 2014; Rodriguez-Perez 275 

et al., 2013; Li et al., 2010; Spencer et al., 2007; Papagiannopoulos et al., 2004; Henning et al., 276 

2003; Self et al., 1986; our unpublished data).  277 

 278 

PROGRESS IN TANNIN ANALYSIS 279 

Several new techniques have been developed recently for analyzing CT mixtures. As Zeller 280 

(2017) has addressed this topic in detail, only a few additional techniques are described below. 281 

An important constraint in the quest for valid tannin data is the requirement for high purity 282 

standards for quantitation, which means that the CT concentration and purity of the standards 283 

needs to be assessed by CT-specific methods such as thiolysis (Williams et al., 2014a; Grabber 284 

et al., 2013; Gea et al., 2011) or nuclear magnetic resonance spectroscopy (Zeller et al., 2015a). 285 

We emphasize that the widely used elution of plant extracts with 70% aqueous acetone from 286 

Sephadex LH-20 columns for tannin ‘purification’ can lead to CT concentrations as low as ~13 g 287 

CTs/100 g ‘purified sample’ (Williams et al., 2014b). Their use would over-estimate CT 288 

concentrations, so additional steps are required to increase their purity (Brown et al., 2017; 289 

Ropiak et al 2017; Fryganas, 2016; Stringano 2011). It is also essential to use CT mixtures that 290 

Page 14 of 70Crop Sci. Accepted Paper, posted 10/19/2017. doi:10.2135/cropsci2017.06.0369



15 
 

are specific to the plant species being investigated, because CT composition affects UV-Vis 291 

absorption maxima and reaction yields that result from the HCl-butanol-acetone and thiolysis 292 

assays (Ropiak et al., 2016a; Wang et al., 2016; Hixson et al., 2015; Engström et al., 2014; 293 

Grabber et al., 2013; Krueger et al., 2005). We emphasize the unsuitability of commercially 294 

available CTs from quebracho (Schinopsis quebracho-colorado (Schltdl.) F. A. Barkley & T. Mey.) 295 

as a ‘standard’ because these have 5-deoxy-flavan-3-ol subunits, which give particularly low 296 

reaction yields that lead to overestimation of CT concentrations (Rautio et al., 2007; Schofield 297 

et al., 2001), and tannic acid is even less appropriate as it contains none of the CT flavan-3-ol 298 

subunits. 299 

 300 

Additional challenges include variation in extractability of CTs. Some can be extracted with 301 

water or aqueous methanol, others require aqueous acetone, but many CTs are tightly bound 302 

to the plant matrix and cannot be extracted with these solvents. By using techniques that only 303 

measure the easily extractable CTs, researchers may risk missing a large fraction (Table 2), that 304 

may have potentially important bioactivities (Hixson et al., 2016; Cheynier et al., 2015; Pérez-305 

Jiménez and Lluís Torres 2011; Gea et al., 2011; our unpublished data). The impact of 306 

extractable vs. unextractable CTs on ruminant nutrition and health has not yet been 307 

determined. 308 

 309 

Thiolysis or phloroglucinolysis (analytical degradation of CTs with thiols or phloroglucinol) can 310 

be used to determine the composition of CTs by depolymerization, enabling characterization of 311 

the flavan-3-ol subunits (Zeller 2017). The use of thiolysis to analyze CTs in whole plant material 312 
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(removing the need for extraction) was first reported by Guyot et al. (2001b) for apple residues 313 

and then adapted to sainfoin and food samples (Gea et al., 2011; Hellström et al., 2008). 314 

However, quantification remains problematic, and higher CT yields have been reported in some 315 

samples with the HCl-butanol-acetone assay, than the thiolysis or phloroglucinolysis assays. 316 

Low values have been linked to oxidative processes affecting reaction yields (Brillouet et al., 317 

2017; Desrues et al., 2017; Klongsiriwet 2016; Hixson et al., 2015).  318 

 319 

However, thiolysis can also generate up to 3-fold higher yields than the HCl-butanol-acetone 320 

assay (Drake and Mueller-Harvey, unpublished results); these particular CTs had high degrees of 321 

galloylation (Fig. 1), and this demonstrates the variation in reactivity of CTs and yield of 322 

assayable end products. These inconsistencies illustrate the challenge of determining the 323 

amount and type of CTs in forage material and reinforce the case for using more than one 324 

method for analyzing CTs, and for using plant-specific CT standards (see above). Recent 325 

observations also suggest that the optimum time for the in situ thiolysis is affected by the plant 326 

species. Some samples yielded more consistent CT parameters if thiolysis was carried out for 2 327 

to 3 hours rather than 1 hour as suggested by Gea et al. (2011). Clearly, there is no one ‘silver 328 

bullet’ for CT analysis and methods need to be evaluated and adapted for a particular plant 329 

species and research objective. 330 

 331 

Infra-red spectroscopy techniques are of particular interest to plant breeders due to their speed 332 

and suitability for screening large numbers of samples; near infrared reflectance spectroscopy 333 

(NIRS) can be used in the laboratory, whereas visible–near infrared (VNIR) and shortwave 334 
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infrared (SWIR) spectroscopy have been used for field screening (Lehmann et al., 2015). NIRS 335 

has potential for measuring not only CT concentrations but also procyanidin:prodelphinidin and 336 

cis-:trans-flavan-3-ol ratios (Fig. 3) (Klongsiriwet 2016; Grabber et al., 2014; Dykes et al., 2014; 337 

Larkin et al., 1997; Peterson et al., 1991; Mueller-Harvey et al, unpublished results). Sample 338 

analysis by NIRS is rapid, but requires robust calibrations that are based on laboratory analyses. 339 

Once calibrated, a single NIRS scan can generate a large amount of information also on other 340 

nutritional parameters, such as fiber, protein, soluble carbohydrate, lignin, dry matter, ash 341 

contents as well as predicted digestibility and gross energy (Givens et al., 2000).  342 

 343 

Figure 3 – here 344 

 345 

TANNIN VARIATION IN GERMPLASM COLLECTIONS AND POTENTIAL FOR TRAIT-DIRECTED 346 

PLANT BREEDING 347 

Alignment of CT composition with function offers opportunities for exploiting their bioactivities, 348 

and germplasm collections offer a rich source of CT variation (Klongsiriwet 2016; Hayot 349 

Carbonero et al., 2011). Concentrations of CTs vary greatly not only between plant species but 350 

also between accessions (Hixson et al., 2016; Grabber et al., 2015; Lorenz et al., 2010; Gruber et 351 

al., 2008; Häring et al., 2008; Sivakumaran et al., 2004; Mosjidis 2001; Larkin et al., 1997). Table 352 

1 lists the variation in forage plants: birdsfoot trefoil tends to have the lowest (<5 g/100 g dry 353 

matter) and sericea lespedeza  and erect canary ‘clover’ the highest CT concentrations (6 – 20 354 

g/100 g dry matter).   355 

 356 
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The CT traits can also differ markedly between accessions, and between parts of the same plant 357 

(Springer et al., 2002). Examples are PC:PD ratios in sainfoin stem CTs of ~50:50 and in sainfoin 358 

leaf CTs of ~10:90 (Malisch et al., 2015). While alfalfa (Medicago sativa L.) seed coats have CTs 359 

with mDP values of 4 to 7 and a PC:PD ratio of 93:7 (Koupai-Abyazani et al., 1993), only the 360 

smaller procyanidin dimers and trimers have been detected in engineered alfalfa leaves 361 

(Hancock et al., 2012). This means that plant breeding can target CT composition and 362 

concentration, which is important because these traits have been linked to different 363 

bioactivities (see below).  364 

 365 

Both concentration and composition can change with season (Muir et al 2017; Grabber et al., 366 

2015; Theodoridou et al., 2011;), but accession differences tend to be much larger (Stringano et 367 

al., 2012; Springer et al., 2002). Importantly, environment did not affect the ranking of the CT 368 

traits of a few sainfoin accessions (i.e. there was no genotype x environment interaction) 369 

(Malisch et al., 2016; Azuhnwi et al., 2013a); this demonstrates that there are opportunities for 370 

trait-directed breeding of new varieties. 371 

 372 

All enzymes involved in the biosynthesis of the CT building blocks, flavan-3-ols, have been 373 

identified - apart from the elusive final condensing enzyme(s) (Harding et al., 2013). Two genes 374 

and several MYB (myeloblastosis) transcription factors (i.e. proteins with myeloblastosis DNA-375 

binding domains that regulate CT synthesis) are responsible for the production of two of the 376 

flavan-3-ols, i.e. catechin and epicatechin (Chezem and Clay 2016; Zhu et al., 2015; Cheynier et 377 

al., 2013; Ferreyra et al., 2012); but the genes and transcription factors for the other flavan-3-378 
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ols await identification. The MYB transcription factors from barrelclover (Medicago truncatula 379 

Gaertn.) and rabbitfoot clover (Trifolium arvense L.) have been expressed in alfalfa and white 380 

clover (Trifolium repens L.) leading to detectable CTs in their shoots and leaves (Hancock et al., 381 

2012 and 2014; Verdier et al., 2012). These developments are providing a pathway for 382 

introducing CTs into the leaves of alfalfa and white clover. It would be interesting to explore 383 

whether the CTs that are already expressed in white clover flowers can be expressed in the 384 

leaves. 385 

 386 

However, it should also be possible to alter the CT composition through conventional crossing 387 

experiments. Scioneaux et al. (2011) showed that CT composition, especially the average 388 

polymer size (the mDP-value) in Populus L. was controlled by genetics and that environment 389 

(location) and season (months) had only a small effect. In addition, interspecies hybridization 390 

can generate plants with novel CT traits as demonstrated with narrowleaf trefoil (L. tenuis 391 

Waldst. & Kit. ex Willd.) x birdsfoot trefoil hybrids (Escaray et al., 2014).  392 

 393 

Despite considerable advances in plant science, genomic resources for forage legumes are still 394 

scarce especially for CT-containing forages (Mora-Ortiz 2015; de Vega et al., 2015; Zarrabian et 395 

al., 2013; Hayot Carbonero 2011; Szczyglowski and Stougaard 2008). These are necessary to 396 

harness the potential benefits of CTs, and for breeding of new varieties with improved 397 

agronomic, nutritional and anti-parasitic traits. European and Asian sainfoin germplasm is very 398 

diverse in terms of morphology, anatomy, drought resistance, CT traits and genetic 399 

polymorphism (Kölliker et al., 2017; Kempf et al., 2017 and 2016; Malisch et al., 2016 and 2015; 400 
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Mora-Ortiz 2016; Mora-Ortiz et al., 2016; Zarrabian et al., 2013; Hayot Carbonero 2011). For 401 

example, anatomical trait analysis (xylem/phloem ratio, vessel and sieve tube diameters, and 402 

phloem width) suggested that large differences exist in water and solute transport mechanisms 403 

between accessions, which are important for drought resistance (Zarrabian et al., 2013).  404 

 405 

Molecular markers are helpful in the analysis of genetic diversity, mapping and quantitative 406 

trait loci (QTL) analysis and in genomics assisted breeding. Next generation sequencing 407 

technology is facilitating the identification and use of molecular markers in plant genetics and 408 

breeding. RNA-sequencing technology is an efficient way of obtaining sequence information of 409 

all the genes that are expressed in a given plant tissue, and it can also be mined for molecular 410 

marker polymorphisms. The first such library of expressed genes in sainfoin was obtained from 411 

5 accessions using this technology (Mora-Ortiz et al., 2016). Annotation of the expressed genes 412 

in the library allowed identification of 59 genes involved in the CT biosynthesis pathway (Mora-413 

Ortiz et al., 2016). It also provided the platform for identifying over 3800 SSR (simple sequence 414 

repeat) markers, and 77,000 SNP (single nucleotide polymorphism) markers (Mora-Ortiz et al., 415 

2016). Phylogenetic analysis revealed that sainfoin is closely related to red clover and 416 

barrelclover . Some of the SSR markers were used to assess the genetic diversity of European 417 

sainfoin accessions representing cultivars and non-cultivars (ecotypes, landraces) (Kempf et al., 418 

2016). These molecular markers are now available as tools for further genetic and genomic 419 

research. They were used to study inbreeding and self-fertilization in sainfoin. In a pilot study, 420 

one marker locus was identified that could explain up to 12% of the variation in CT 421 

composition, i.e. procyanidin:prodelphinidin ratio (Kempf et al., 2017). We anticipate that the 422 
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sequence and molecular marker information now available (Mora-Ortiz et al., 2016; Kempf et 423 

al., 2016) can be used to assist breeding of novel sainfoin varieties, with CT traits that are 424 

optimized for animal nutrition and health. 425 

 426 

AGRONOMY, WEED CONTROL, HARVESTING AND PROCESSING OF TANNINIFEROUS FORAGE 427 

LEGUMES 428 

There is currently considerable global interest in harnessing the benefits of CTs in forage 429 

legumes to support the sustainability agenda of agriculture: birdsfoot trefoil, sericea lespedeza 430 

and prairie clover prairie clover (Dalea purpurea Vent.) have been evaluated in the USA, 431 

Canada, New Zealand and Switzerland (Grabber et al., 2015; Li et al., 2014; Berard et al., 2011; 432 

Häring et al., 2008; Waghorn 2008; Mosjidis 2001), sulla in Australia (Heuzé et al., 2015; de 433 

Koning et al., 2003 and 2010) and sainfoin in Canada and Europe (Bhattarai et al., 2016; Malisch 434 

et al., 2015; Hayot Carbonero et al., 2011; Häring et al., 2008). The choice of which forage to 435 

grow will depend on the climate, soil, environment and farming practices. The performance of 436 

these forages have been tested in pure stands and in combinations with partner species to 437 

increase the overall forage quantity and quality (Wang et al., 2015; Lüscher et al., 2014; Döring 438 

et al., 2013; Hayot-Carbonero et al., 2011; de Koning et al., 2010; Häring et al., 2008).  439 

 440 

Co-cultivation of legumes and companion crops 441 

Co-cultivation of forage legumes with companion crops can deliver higher total yields (Malisch 442 

et al., 2017; Hunt et al., 2016; Mora-Ortiz 2015; Döring et al., 2013; Finn et al., 2013; Nyfeler et 443 

al., 2009), more nitrogen fixed per hectare (Vasileva and Ilieva, 2016; Nyfeler et al., 2011) and 444 
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can improve the dry matter and nitrogen digestibilities of co-ensiled mixtures (Wang et al., 445 

2007), but success depends on the agronomic compatibility of the species, appropriate 446 

treatments and development of new sainfoin varieties with a more competitive canopy 447 

(Kölliker et al., 2017; Malisch et al., 2017; Mora-Ortiz and Smith, 2017 and 2016; Mora Ortiz 448 

2015). 449 

 450 

Traditional mixtures for sainfoin establishment in the UK have included grasses such as Timothy 451 

(Phleum L.) and meadow fescue (Schedonorus pratensis (Huds.) P. Beauv.) or under-sowing with 452 

spring barley (Hordeum L.) as companions (Mora-Ortiz and Smith, 2016; Mora-Ortiz, 2015; Liu 453 

et al., 2008). However, new investigations showed that chicory (Cichorium intybus L.) – which 454 

also has anti-parasitic properties – and oat (Avena sativa L.) can be co-cultivated with sainfoin 455 

for a short period, i.e. two agronomic cycles (Mora-Ortiz and Smith, 2016; Mora-Ortiz, 2015), 456 

but chicory was found to be a very aggressive partner and to suppress sainfoin (Häring et al., 457 

2008). North American researchers have also explored oat and alfalfa as companion crops for 458 

irrigated birdsfoot trefoil and sainfoin (Hunt et al., 2016; Wang et al., 2015) and this involved 459 

developing a new sainfoin population for co-cultivation with alfalfa. The novelty of this work 460 

lies in the fact that this new sainfoin population has good competitiveness against alfalfa, 461 

compared to previous sainfoin accessions where seedlings first produced a long taproot and 462 

could become outgrown by weeds and many companion species (Hayot Carbonero et al., 2011).  463 

 464 

Weed control 465 
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Weed control in sainfoin can be achieved (Malisch et al., 2017; Mora-Ortiz and Smith, 2016; 466 

Mora-Ortiz, 2015) through appropriate choice of partner species, sowing densities and cutting 467 

frequencies and can lead to stable sainfoin percentages (i.e. ca 40% of the sward was sainfoin), 468 

which suffice to reduce the incidence of bloat (Malisch et al., 2017; Wang et al., 2006). This was 469 

also demonstrated for several other legume species in a pan European experiment (Connolly et 470 

al., 2017; Suter et al., 2017; Finn et al., 2013). Other strategies for weed control can include 471 

application of pre-emergence, post-emergence and maintenance herbicides (Mora-Ortiz and 472 

Smith, 2017; Mora-Ortiz, 2015; Amiri et al., 2013; Frame et al., 1998; Moyer et al., 1990; 473 

Sheldrick and Thomson, 1982). In the case of sainfoin, weed suppression is directly correlated 474 

with sainfoin establishment and yields.  475 

Current understanding of CT expression in sainfoin suggests it should be possible to breed new 476 

forage legumes with good yields and consistent CT profiles, which is important as farmers need 477 

varieties with predictable CT traits.  478 

 479 

Effects of drought on yield and CT content in sainfoin accessions  480 

However, instead of using irrigation to boost yield, others have focused on exploiting the 481 

taproot of sainfoin, as sainfoin can remain productive on dry, marginal soils and can continue to 482 

grow during unseasonably dry weather. To test this drought tolerance, 30 sainfoin accessions 483 

were subjected to drought for 18 weeks with the mean soil water potential of the upper 40 cm 484 

being below -2 MPa and were compared to the dry matter yields of rainfed controls that 485 

received additional irrigation when the soil water potential was below -0.6 MPa. The results 486 

were also compared with six other forage species (legumes, non-leguminous forbs and grasses) 487 
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of known drought tolerance. This showed that some sainfoin accessions were as tolerant under 488 

severe drought as alfalfa and a few accessions even exceeded its drought tolerance. Most 489 

sainfoin accessions had also lower drought losses than chicory (Malisch et al., 2014).  In addition, 490 

the CT traits were assessed under drought and control conditions for five of these accessions. 491 

Whilst CT composition was hardly affected by drought, the CT concentrations increased at the 492 

vegetative, but not at the reproductive, stage (Malisch et al., 2016).  493 

Moreover, there were no interactions between drought and accession for CT traits; and it 494 

remains to be seen whether the ranking of sainfoin accessions according to their CTs is 495 

maintained across other environments (Malisch et al., 2016). Another study with 100 sainfoin 496 

genotypes from 10 ecotypes showed that drought tolerance was, however, correlated with leaf 497 

proline content (Irani et al., 2015). This correlation is in accordance with previous studies and 498 

while the cause and effect relationships between proline and drought tolerance is not yet fully, 499 

proline can act as an osmoprotectant, thus stabilizing membranes and maintaining cell turgor. 500 

Additionally, there is some indication that it might contribute to up-regulation of drought 501 

tolerant genes (Per et al, 2017; Szabados and Savouré, 2010). Therefore, the current 502 

understanding of CT expression in sainfoin suggests that it should be possible to breed new 503 

varieties with good yields, drought tolerance and consistent CT profiles, which is important as 504 

farmers need forage legumes with predictable CT traits. 505 

 506 

Grazing versus preservation 507 

Legume swards expressing CTs can be grazed safely as they are non-bloating (MacAdam et al., 508 

2015; Wang et al., 2012), but optimal use of CT-forages would most likely be as a substitute for 509 
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existing legumes in mixed swards – such as white clover with ryegrass (Lolium L.). This is 510 

because dry matter yields are greater from grasses than legumes (subject to adequate nitrogen 511 

availability) and because farmers in temperate climates have identified forage species 512 

(including grasses) that enable profitable farming. In these situations the CT concentration in 513 

the diet is diluted by the contribution of the CT-free component of the sward (Waghorn and 514 

Shelton, 1997), so high CT concentrations of the bioactive CT-legume might be most useful as 515 

the CTs in one forage can affect digestion of protein in the companion forage (Waghorn and 516 

Jones, 1989). 517 

 518 

Several CT-forages possess anti-parasitic properties, which are of special interest for sheep and 519 

goat grazing systems (Hoste et al., 2010) or when there is anthelmintic resistance (Terrill et al., 520 

2012). Condensed tannins may also provide benefits when immunity of animals is low, i.e. 521 

around parturition or weaning, but the need to combat parasitism at such times does not 522 

necessarily coincide with the availability of fresh CT-forages. Therefore, bioactivity needs to be 523 

maintained when processing CT-forages into hay, pellets or silages. Conserved forages allow 524 

out-of-season feeding, but may – especially in the case of pellets (Girard et al., 2016a) – also 525 

offer opportunities for standardizing and optimizing CT traits, and enable transportation to 526 

other regions.  527 

 528 

Processing of CT forages into hay, pellets or silages can have a marked effect on CT 529 

concentration and extractability (Fig. 4), and appears to increase protein-bound, and possibly 530 

covalently linked CTs (Girard et al., 2017; Huang et al., 2016; Ramsay et al., 2015; Vernhet et al., 531 

Page 25 of 70 Crop Sci. Accepted Paper, posted 10/19/2017. doi:10.2135/cropsci2017.06.0369



26 
 

2011; Lorenz et al., 2010; Minnée et al., 2002; Terrill et al., 1997). Ensiling sainfoin or sulla 532 

reduced ammonia production, improved silage quality and protected plant protein during 533 

fermentation, which improved its nutritional value relative to forages without CTs (Lorenz et al., 534 

2010; Niezen et al., 1998b). There is a need for feeding trials to assess the biological significance 535 

of unextractable CTs in terms of ruminal or intestinal digestion and efficacy against parasitic 536 

nematodes. These questions could perhaps be addressed through experiments that explore 537 

accession differences in terms of unextractable CTs.  538 

 539 

Figure 4 - here 540 

 541 

ELUCIDATING RELATIONSHIPS BETWEEN CT STRUCTURES AND ANTI-PARASITIC EFFECTS 542 

Parasitism imposes a considerable nutritional penalty on animals and therefore controlling the 543 

parasite burden will indirectly benefit the nutritional status of animals. This is the reason for 544 

noting that CT-forages can be used for nutraceutical purposes, which refers to a combined 545 

action of nutritional and anti-parasitic benefits that include anthelmintic (Hoste et al., 2015 and 546 

2016; Terrill et al., 2012) and anti-coccidial effects (Saratsis et al., 2016; Kommuru et al., 2014). 547 

Most evidence of anthelmintic effects of CTs stems from in vitro assays but some in vivo feeding 548 

trials under controlled experimental conditions have also yielded promising results. It is 549 

therefore timely to summarize the emerging trends and CT structure-activity relationships, 550 

which were obtained with a range of in vitro assays, in order to guide future feeding trials.  551 

 552 

Anti-parasitic effects of prodelphinidins and galloylated CTs 553 
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CTs with high molar percentages of prodelphinidins (% PD) and galloylation have given good 554 

anthelmintic effects in vitro with parasite larvae (L). These include inhibition of  L3 migration 555 

and L4 motility with Ascaris suum, as well as L1 feeding inhibition, adult motility assays of 556 

Ostertagia ostertagi and Cooperia oncophora, and larval exsheathment inhibition of 557 

Haemonchus contortus and Trichostrongylus colubriformis of L3 larvae (Ramsay et al., 2016; 558 

Desrues et al., 2016a; Quijada et al., 2015; Brunet and Hoste 2006). These findings could explain 559 

the excellent in vivo results with sheep or goats  that were obtained when feeding sericea 560 

lespedeza (these CTs consist of almost pure prodelphinidins with high mDP values), big trefoil, 561 

sainfoin, sulla plants or hazelnut (Corylus L.) peels (high % PD) and lentisk browse (galloylated 562 

compounds) (Hoste et al., 2015; Rodríguez-Pérez et al., 2013; Landau et al., 2010). These in vivo 563 

trials found better host resilience, lower fecal egg counts of H. contortus, Teladorsagia 564 

circumcincta and T. colubriformis and of a mixed gastro-intestinal nematode infection, which 565 

were attributed to lower worm fecundity (Landau et al., 2010; Paolini et al., 2005; Niezen et al., 566 

1998a, 1995), and also lower Eimeria oocyst counts (Kommuru et al., 2014). Control of T. 567 

colubriformis was reflected in higher liveweight gains by lambs fed sulla than alfalfa (Niezen et 568 

al., 1995).  569 

 570 

Anti-parasitic effects of the mean degree of CT polymerization 571 

The average size of CTs in a polymeric mixture (mDP value) can also affect their anti-parasitic 572 

activity, with larger polymers being more potent against exsheathment of H. contortus L3 and 573 

larval feeding of O. ostertagi and C. oncophora L1 larvae in vitro (Desrues et al., 2016a; Quijada 574 

et al., 2015). However, prodelphinidin-rich plants tend to have CTs with high mDP values and 575 
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high CT concentrations (Laaksonen et al., 2015; Kommuru et al., 2014; Mueller-Harvey et al., 576 

unpublished observations), confounding our understanding of CT structure-activity 577 

relationships. The characteristics of CTs responsible for anti-parasitic effects need to be 578 

understood, in order to identify optimal feed sources.  579 

 580 

Apart from the examples above, very few other plants with high molar prodelphinidin or galloyl 581 

percentages or high mDP-values >15 have been evaluated in vivo to determine their efficacy 582 

against gastro-intestinal parasites. The Plant Kingdom remains a rich and under-explored 583 

resource of such promising CTs (Table 3) and it would be timely to test these in vitro results by 584 

feeding plants, browse or agro-industrial by-products with differing CT traits to parasitized 585 

livestock. As traits vary across accession and environment, it is important to analyze the dietary 586 

CTs to establish their relationships with anti-parasitic effects. This would enable guidelines to 587 

be formulated for development of new plant varieties for optimal bioactivities. 588 

 589 

One other aspect also needs investigation: are CT traits that are optimal for anti-parasitic 590 

effects compatible with nutritional benefits - or would farmers require plants with different CTs 591 

for either anti-parasitic or nutritional purposes? Given the encouraging results with sericea 592 

lespedeza and panicledleaf ticktrefoil (Desmodium paniculatum (L.) DC.) especially in 593 

parasitized animals, anthelmintic and nutritional benefits may not be mutually exclusive (Cherry 594 

et al., 2014; Terrill et al., 2012), but other options could include sacrificing nutrition for a short 595 

period, enabling an appropriate period of CT-feeding to achieve parasite control.  596 

 597 
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Mechanisms of anti-parasitic CT action 598 

A key question concerns the mechanisms by which CTs exert their effects. It is thought that the 599 

ability of CTs to suppress gastro-intestinal nematodes stems from their ability to bind with 600 

proteins (Hoste et al., 2012). Thus, CTs could act by inhibiting key parasite enzymes, and indeed 601 

inhibition of parasite glutathione-S-transferases, which play an important role in the 602 

detoxification of xenobiotic compounds, has been confirmed in in vitro experiments (Hansen et 603 

al., 2016). Prodelphinidins have more phenolic groups capable of forming hydrogen bonds with 604 

proteins than procyanidins (Fig. 1); but it has also been established that the mDP value is the 605 

most important factor for CT-protein aggregation and precipitation (Ropiak et al., 2017; Zeller 606 

et al., 2015b). Taken together, these observations could explain why prodelphinidins, which 607 

generally have larger mDP values than procyanidins, have better anthelmintic properties (Hoste 608 

et al., 2016; Kommuru et al., 2015 and 2014).  609 

 610 

By using electron microscopy, a number of studies have revealed physical deformations of H. 611 

contortus adult worms that had been exposed to CTs in either in vitro experiments or collected 612 

after feeding sericea lespedeza or sainfoin plants or tzalam (Lysiloma latisiliquum (L.) Benth.) 613 

leaves (Kommuru et al., 2015; Martínez-Ortíz-de-Montellano et al., 2013). The shriveled 614 

surfaces and plaque formations around orifices could account for inhibition of feeding and 615 

lowering of fecundity and are thought to stem from CTs interacting directly with proteins on 616 

parasite surfaces (Ropiak et al., 2016b). Scanning and transmission electron microscopy 617 

detected not only external but also internal damage to the cuticle and sensilla of the lip region 618 

of young and adult Caenorhabditis elegans by different CT types, to the cuticle and underlying 619 
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tissue (i.e. muscle cells) and intestinal cells of H. contortus L3 larvae and adults and of T. 620 

colubriformis L3 larvae by sainfoin and tzalam CTs (Ropiak et al., 2016b; Martínez-Ortíz-de-621 

Montellano et al., 2013; Brunet et al., 2011). Given the low uptake (bioavailability) of polymeric 622 

CTs in mammalian tissues in comparison with monomeric flavonoids (Li and Hagerman, 2013), it 623 

would be worth exploring whether the internal tissue damage arises from the CTs or from other 624 

compounds that may be present in plant extracts (Mengistu et al., 2017; Desrues et al., 2016a; 625 

Klongsiriwet et al., 2015; Williams et al., 2015; Brunet and Hoste, 2006). It also raises the 626 

question whether mixtures of CTs plus co-occurring smaller plant compounds (such as 627 

quercetin, luteolin, cinnamaldehyde, etc) can cause both external and internal damage, or 628 

whether internal damage may be due to a disruption of nematode metabolism in turn causing 629 

necrosis of cells and tissues. CTs together with a flavone (luteolin), a flavonol (quercetin), or 630 

cinnamaldehyde can act synergistically against parasitic nematodes in vitro (Hoste et al., 2016; 631 

Ropiak et al., 2016b; Klongsiriwet et al., 2015; Barrau et al., 2005). These in vitro findings are yet 632 

to be tested in feeding trials using combinations of feeds with different CTs and such 633 

monomeric compounds, but such combinations should hopefully lead to future on-farm 634 

applications. 635 

 636 

Tissue and host responses to CTs 637 

In addition to direct anthelmintic effects against parasites, more work is also warranted on how 638 

CTs may influence host responses to parasites. Niezen et al., (2002) measured higher antibody 639 

titres against antigens to adult T. circumcincta and adult and larval T. colubriformis when lambs 640 

were fed with sulla compared to alfalfa. This may be a result of increased intestinal flow of 641 
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proteins and amino acids associated with ruminal protection of protein degradation, which can 642 

contribute towards the host’s ability to maintain growth, immune function and regulate worm 643 

populations (Hoste et al., 2012; Ramírez-Restrepo et al., 2010; Rios-De Alvarez et al., 2008). 644 

Moreover, recent in vitro studies have also indicated that CTs can directly modulate the activity 645 

of immune cells such as γδ T-cells and dendritic cells, potentially enhancing the host’s innate 646 

immune response (Williams et al., 2016 and 2017; Tibe et al., 2012). Similar to other bioactivity 647 

studies, immune-modulating activity in vitro is highly dependent on CT size, with mDP >6 648 

eliciting a stronger response than CTs with mDP <6, and flavan-3-ol monomers have little or no 649 

effect (Williams et al., 2016 and 2017).  650 

 651 

Effects of fermentation on CT activity 652 

Work has started on determining how fermentation affects CT concentrations and bioactivities. 653 

According to results from the HCl-butanol-acetone or thiolysis assays fermentation can reduce 654 

‘apparent’ CT concentrations by 30% or 85%,  respectively, in silages (Mena et al., 2015; Ramsay 655 

et al., 2015) and the gut (Desrues et al., 2017; Quijada et al., 2017). However, despite these 656 

apparent losses, sericea lespedeza and sainfoin silage extracts and silages still exerted 657 

anthelmintic effects in vitro by inhibiting the exsheathment of H. contortus L3 larvae and in vivo 658 

by lowering adult worm burden and fecal egg counts (Terrill et al., 2016; Manolaraki 2011; 659 

Heckendorn et al., 2006). This may either be due to sufficient quantities of undegraded CTs or 660 

hydrolysis of anthelmintic flavonoids from inactive glycosides (Manolaraki 2011) or to protein-661 

bound CTs surviving ruminal fermentation and exerting anthelmintic activity in the abomasum 662 

where a lower pH facilitates dissociation of the CT-protein complex (Jones and Mangan, 1977). 663 
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A high activity against O. ostertagi nematodes of the abomasum contrasted with no activity 664 

against intestinal Cooperia oncophora nematodes and was associated with 2.3% CTs (g/100 g 665 

DM by thiolysis) in the abomasum versus 0.02% CTs in the intestine (Desrues et al., 2016a,b and 666 

2017). However, both nematode species were affected by CTs in the in vitro larval feeding 667 

inhibition assay (Desrues et al., 2016a). 668 

 669 

EFFECTS ON RUMINAL FERMENTATION AND CONSEQUENCES FOR RUMINANT NUTRITION 670 

AND GREENHOUSE GAS EMISSIONS 671 

Effects on nutrition and dietary protein utilization 672 

Nutritional effects of CTs are currently understood in general terms, and information 673 

concerning the ways CTs affect specific processes are only now being defined by determining 674 

the CT traits of forages used for in vivo and in vitro measurements and their effects on the 675 

microbiome (Grosse Brinkhaus et al., 2017 and 2016). Binding to dietary proteins and reduction 676 

in rumen proteolysis, resulting in higher proportions of dietary protein passing to the small 677 

intestine, have been measured (Waghorn, 2008) but details and mechanisms are not 678 

understood. The findings by Kariuki and Norton (2008) indicated that the release of dietary 679 

protein between the abomasum and terminal ileum was correlated with the protein 680 

precipitation capacity of CTs, which depends on the structures of both the CTs and the proteins 681 

(Dobreva et al., 2012; Hagerman and Butler, 1981). The measurements of Wang et al. (1996) 682 

are especially important in this regard, because they showed that in sheep fed birdsfoot trefoil 683 

with PEG (which inactivated the CTs) that about 80% of amino acid absorption occurred in the 684 

first half of the intestine, but the entire length of the intestine was required for absorption 685 
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when CTs were active. Hence the unknowns concerning CT interactions with rumen function, 686 

microbial growth and intestinal absorption need to be evaluated in terms of dietary CT traits. 687 

 688 

The current evidence suggests that only four forage legumes, birdsfoot trefoil, sainfoin, sulla 689 

and crownvetch (Securigera varia (L.) Lassen) support higher ruminant growth rate or milk 690 

yield, when fed as a sole diet, compared to CT-free diets (MacAdam and Villalba 2015; Piluzza 691 

et al., 2014; Naumann et al., 2013; MacAdam et al., 2011; Patra and Saxena 2010; Waghorn 692 

2008; Rochfort et al., 2008; Mueller-Harvey 2006; Waghorn et al., 1990 and 1997; Burns et al., 693 

1972). However, other CT-forage legumes or some CT-browse species may be beneficial when 694 

fed as part of a diet (e.g. lotuses; Ayres et al., 2006). A universal consequence of dietary CTs is a 695 

reduction in urinary N excretion (because of reduced rumen proteolysis), and an increase in 696 

fecal excretion of N (Waghorn 2008; Mueller-Harvey 2006). 697 

 698 

Evaluation of nutritional benefits can be complicated, especially if both feed quality 699 

(digestibility) and voluntary feed intake are important. Variations in intake are likely to 700 

confound comparisons of digestibility, but digestible matter intake is a recognized indicator of 701 

performance. There are a number of ways that the effects of CTs can be determined, and 702 

several studies (Table 4) have fed a CT-forage to two groups of animals, with one receiving daily 703 

doses (or intra-ruminal infusions) of polyethylene glycol (PEG) to bind and de-activate the CTs. 704 

This ensures the majority of the diet is the same, and enables the effect of the CTs to be 705 

evaluated. An option used by some researchers, to compare a CT diet with a ‘similar’ non-CT 706 

diet is fraught with difficulties. No species are optimal for comparisons, and any differences in 707 
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composition, digestion or intake will compromise the evaluation of the CTs. It is also important 708 

to distinguish the ‘CT effect’ from a ‘legume effect’ when evaluating a CT-forage fed with e.g. 709 

grasses, and if the animals are parasitized any benefits of CTs could arise from direct or indirect 710 

impacts on the parasites (Hoste et al 2015 and 2016).  711 

 712 

Furthermore, because CTs reduce the digestion of protein in the rumen and over the entire 713 

gastrointestinal tract (Waghorn, 2008), it is unlikely that any nutritional benefits will result 714 

when dietary crude protein is insufficient. Benefits are more likely when dietary protein is in 715 

excess of requirements. However, if in the presence of enough protein (or amino acids) other 716 

nutrients are limiting (e.g. energy intake or phosphorus), providing additional protein will not 717 

improve production (Pagán-Riestra et al 2010; Waghorn 2008). Hence the methods by which 718 

animals are fed and their physiological state (e.g. lactating, growing or at maintenance) when 719 

evaluating the nutritional effects of CTs can contribute to inconsistencies in findings. In 720 

addition, comparative measures of digestion may be confounded by variation in intakes 721 

because increasing intakes may reduce digestibility (Tyrell and Moe, 1975), but on other 722 

occasions have no effect (Hammond et al., 2013). 723 

 724 

A number of studies with sainfoin and birdsfoot trefoil have also yielded contradictory results, 725 

often with lower or no production benefits measured when compared to CT-free controls 726 

(Copani et al., 2016; Girard et al., 2016a,b; Aufrère et al., 2013; Azuhnwi et al., 2013b; 727 

Theodoridou et al., 2010; Waghorn et al., 1997; Thomson et al., 1971). In addition to the 728 

constraints mentioned above (dietary crude protein concentration or whether other nutrients 729 
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are limiting production) variations in CT traits within germplasms may also affect animal 730 

responses (Grabber et al., 2015). For example, the UK Hampshire Common and Cotswold 731 

Common sainfoin accessions had higher PC:PD ratios (>30:70) than the continental European 732 

Visnovsky accession (<19:81) (Stringano et al., 2012; Stringano 2011) and could have accounted 733 

for these contradictory reports. Birdsfoot trefoil has delivered good growth rates in the USA 734 

and New Zealand and the PC:PD ratios were around 80:20 (MacAdam and Villalba 2015; 735 

Meagher et al., 2004). However, when two sainfoin cultivars with PC:PD ratios of 24:76 736 

(Visnovsky) and 37:63 (Perly) were fed to lambs infected with H. contortus, concentrations of 737 

essential amino acids in plasma were higher than when both diets had been treated with PEG 738 

to inactivate CTs (Azuhnwi et al., 2013b); it is not known whether the higher plasma 739 

concentrations were a direct result of CTs on protein digestion or an anthelmintic effect against 740 

H. contortus. Variable results could be investigated by considering CT traits in conjunction with 741 

diet composition, e.g. protein, fiber, water-soluble carbohydrate, starch and amino acid 742 

contents as these can be affected by environment (Grabber et al., 2015), forage harvesting or 743 

preservation methods. This means that nutritional evaluations of CT-plants need to be 744 

undertaken under documented and controlled conditions, with information on harvesting and 745 

preservation methods (grazed, dried as hay or pellets or ensiled).  746 

 747 

Another potentially important issue could be how animals are fed, because CT traits also vary 748 

within plants. In Spain, it is traditional to take the first sainfoin cut as hay and then leave 749 

animals to graze the regrowth (Dr S.F. Demdoum 2012 - personal communication). Under light 750 

stocking regimes in the UK, sheep will only eat the sainfoin tops (flowers and younger leaves) 751 
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and leave older leaves and stems intact (Mueller-Harvey, personal observation). Therefore, 752 

feeding whole plants as pellets, hay or silage could result in forages with very different nutritive 753 

values compared to grazed forages, and also because conservation affects CT concentrations; 754 

these facts could be another reason for the contradictory results mentioned above. 755 

 756 

One of the very few feeding trials that compared two birdsfoot trefoil cultivars with similar 757 

nutritional composition - apart from their CT concentrations - found that the ‘Maitland’ cultivar 758 

(3.5 g CTs/100 g DM) achieved better N-retention in sheep than the ‘Empire’ cultivar (0.5 g 759 

CTs/100 g DM) (Waghorn et al., 1987). Greater retention of dietary protein suggested that the 760 

Maitland CTs protected more soluble protein from digestion in the rumen, but did not interfere 761 

with protein digestion and absorption in the abomasum and small intestine. More research is 762 

needed to establish the precise fate of dietary protein in the abomasum and intestine in the 763 

presence of CTs. Estimates based on their potentially beneficial protein-protection effects 764 

suggest that if alfalfa had just 1% CTs in its dry matter this could achieve a 12% increase in net 765 

returns for US dairy farmers (McCaslin et al., 2014). 766 

 767 

It is unfortunate that few studies describe the composition of CTs in plants that have been fed 768 

to ruminants, and the ‘LegumePlus’ program has attempted to address this issue by 769 

encouraging communication and collaboration among chemists, plant and animal scientists. 770 

However, we still do not know which CT traits plant breeders should be targeting: i.e. dietary CT 771 

concentration, PC:PD ratio or mDP values or a combination of these, in order to increase 772 

livestock production and product quality. Apart from a few in vitro studies (Huyen et al., 2016a; 773 
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Hatew et al., 2016; Azuhnwi et al., 2013b), no feeding trials have attempted to resolve the 774 

relationships between animal production and CT traits. Interdisciplinary research is needed to 775 

uncover the mechanisms by which CTs exert their effects on rumen (microbial) digestion and 776 

utilization of dietary nutrients, and this will require compositional (rather than colorimetric) 777 

analyses of the dietary CTs. 778 

 779 

The size of CTs is the key parameter that controls CT-protein aggregation and precipitation. This 780 

has been illustrated using bovine serum albumin (BSA) and gelatin, where aggregation 781 

increased markedly as the mDP values increased from 3 to 8 (corresponding to CT molecular 782 

weights of ca 1000 Daltons to 2400 Daltons); but there were only small differences in the 783 

efficacies of larger CTs with mDP >9 to aggregate the proteins (Ropiak et al., 2017). It would be 784 

worth testing whether CT size also affects the mechanism by which CTs interact with dietary or 785 

endogenous animal proteins, as Zeller et al. (2015b) have shown that relatively more alfalfa 786 

protein was precipitated by CTs than BSA protein, which could be due to the major leaf protein, 787 

RuBisCo (ribulose-1,5-bisphosphate carboxylase/oxygenase), being much larger (560 kDa) than 788 

BSA (67 kDaltons). It will be necessary to determine if CTs with different mDP-values affect 789 

dietary protein degradation and digestion, especially as the major proteins in forages (RuBisCo) 790 

and beans (albumins, prolamins) and intestinal gut tissue and mucoproteins have quite 791 

different structures, which will influence their interactions with CTs (Hagerman and Butler, 792 

1981). As an aside, we have included bean proteins in this context as several papers from the 793 

1960-1970s on the nutritional effects of dietary tannins originated from feeding CT-containing 794 
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beans (Jansman, 1993; Lowry et al 1996). It would, therefore, be timely to review some of these 795 

results in the light of new knowledge on CT and protein structures.   796 

 797 

Effects on the quality of animal products  798 

There are some effects of sainfoin diets on milk and meat quality and on the animal’s 799 

physiological response to dietary CTs. Cattle fed a grass-sainfoin (mixture of Zeus/Esparcette 800 

accessions) silage or sheep grazed on big trefoil (var. Maku) partitioned energy towards protein 801 

synthesis rather than lipid synthesis, compared to grass-corn silage and white clover diets, 802 

respectively (Huyen et al., 2016b; Purchas and Keogh 1984). Feeding dairy cows with sainfoin 803 

pellets lowered milk and blood urea concentrations compared to alfalfa and birdsfoot trefoil 804 

pellets (Girard et al., 2016a; Grosse Brinkhaus et al., 2016) because of the reduction in rumen 805 

proteolysis and ammonia absorption. 806 

 807 

Sainfoin and birdsfoot trefoil diets reduced bacterial biohydrogenation in the rumen, increased 808 

unsaturated fatty acid contents in milk, cheese and meat products, and reduced indole and 809 

skatole in lamb meat (Girard et al., 2016a,b; Huyen et al., 2016b; MacAdam and Villalba 2015; 810 

Schreurs et al., 2007; Priolo et al., 2005). Skatole and indole were associated with ‘fecal’ flavors 811 

characteristic of pasture-fed products and originated from amino acid degradation by 812 

Clostridium aminophilum (Attwood et al., 2006), which was relatively sensitive to CTs 813 

(Sivakumaran et al., 2004). More recently, Campidonico et al. (2016) reported that CTs and 814 

polyphenol oxidases in a sainfoin/red clover (Trifolium pratense L.) silage mixture generated 815 
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additive effects that increased the intra-muscular unsaturated fatty acid contents of lambs 816 

compared to a pure grass diet. 817 

 818 

Effects on nitrogen and methane emissions  819 

The reduction in urinary N and increase in fecal N excretion seems to be a universal 820 

consequence of dietary CTs fed to ruminants, and is important because a greater proportion of 821 

N is lost from urine than feces. Thus CTs can improve soil nitrogen status, lower emissions of 822 

the potent greenhouse gas, N2O and lessen N leachate into to waterways and groundwater 823 

(Theodoridou et al., 2010; Kingston-Smith et al., 2010). A shift from urinary to fecal N could 824 

redue nitrogen losses by 25% and achieve savings on N-fertilizers based on preliminary 825 

estimates from the Integrated Farm System model for dairy farms (Zeller and Grabber 2015). 826 

Other opportunities for reducing the environmental impact of N emissions from ruminant 827 

livestock include the use of galloylated CTs and epigallocatechin gallate (EGCg, a galloylated 828 

flavan-3-ol monomer), because they are urease inhibitors (Takeuchi et al., 2014; Powell et al., 829 

2011; Huynh-Ba et al., 1994). Urease inhibition reduces ammonia emissions from urine and 830 

subsequent N2O production (Kingston-Smith et al., 2010). Grape seeds and some agro-industrial 831 

residues are sources of galloylated CTs and EGCg (Ramsay et al., 2016; Lee et al., 2014; Li et al., 832 

2010), and application to the barn floor will lessen ammonia and N2O emissions from intensive 833 

systems. 834 

 835 

It is clear that CTs can provide important benefits to ruminant farming; however, high dietary 836 

concentrations or CTs with the ‘wrong’ compositional traits will lower the digestion and 837 
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utilization of dietary protein and absorption of essential amino acids by ruminants (Min et al., 838 

2003). The challenge is to identify which CT traits are best able to enhance utilization of dietary 839 

protein to improve animal production, environmental sustainability and profitability for 840 

farmers. 841 

 842 

CONCLUSIONS AND POSSIBLE DIRECTIONS FOR THE FUTURE 843 

Condensed tannins are the fourth largest group of secondary plant metabolites in the Plant 844 

Kingdom and provide opportunities for breeding forage legumes with novel CT traits. Research 845 

on CT-containing feeds has the potential to improve ruminant health by preventing bloat and 846 

mitigating effects of parasitism, as well as lowering environmental footprints and improving the 847 

sustainability of food quality and production for consumers (Tedeschi et al 2014). Innovative 848 

molecular approaches have enabled alfalfa and white clover to express procyanidin dimers and 849 

trimers in their foliages (Hancock et al., 2012, 2014; McCaslin et al., 2014; Verdier et al., 2012). 850 

Apart from research by Mosjidis and colleagues, who selected for low-CT content and grazing-851 

tolerant sericea lespedeza for cattle production (Mosjidis, 2001), there has been hardly any 852 

plant breeding for enhanced CT- composition; but progress is becoming feasible as new 853 

genomic data and molecular markers for CTs have been obtained (Mora-Ortiz et al., 2016; 854 

Kempf et al., 2016). Alternatively, varieties with specific CT traits could also be obtained by 855 

conventional selection, focusing on the compositional CT differences that exist already between 856 

plant species, between but also within accessions and plant parts.  857 

 858 

Page 40 of 70Crop Sci. Accepted Paper, posted 10/19/2017. doi:10.2135/cropsci2017.06.0369



41 
 

This review has highlighted that interdisciplinary research is essential for developing new 859 

forages with desirable CT traits and bioactivities, and requires well-coordinated inputs from 860 

plant scientists, chemists, animal nutritionists and parasitologists. Such collaborations have 861 

succeeded in identifying the large variation in CT traits and their in vitro nutritional and 862 

parasitological effects that pertain tothe germplasms of sainfoin and birdsfoot trefoil (Malisch 863 

et al., 2015; Grabber et al., 2014; Stringano et al., 2012), which grow in temperate climates. 864 

Such variation is likely to exist also in other species, e.g. sericea lespedeza and prairie clover 865 

(Berard et al., 2011; Mosjidis 2001), which grow in warm humid and colder regions, 866 

respectively. It would be timely to explore these in vitro results by feeding CT-forage legumes 867 

with varying CT traits, to develop robust targets and tools for plant breeding. 868 

 869 

Researchers must become aware that most colorimetric assays are not appropriate for 870 

determining CT concentrations or compositions. For example the p-871 

dimethylaminocinnamaldehyde and HCl/vanillin reagents detect CTs, but also their monomeric 872 

flavan-3-ol precursors; and the Folin Ciocalteu reagent detects all phenolic groups, whether in 873 

monomeric flavonoids, proteins, condensed or hydrolysable tannins (Schofield et al., 2001). 874 

These problems are made worse by the use of inappropriate CT-material to construct 875 

calibration curves for analysis of CT concentrations as mentioned in Section 3 (Grabber et al., 876 

2013; Krueger et al., 2005). The fact that a multitude of methods or standards have been 877 

chosen to measure CTs has prevented comparisons of published CT concentrations from 878 

feeding trials and the setting of optimum thresholds for CT traits. Appropriate CT analysis is 879 

crucial to progressing this field. 880 
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 881 

Laboratory studies have probed the impact of CT concentration, polymer size and PC:PD ratios 882 

on ruminal fermentation and anti-parasitic effects. The time has come for feeding trials with 883 

selected forages of similar nutritional compositions but different CT traits to test these in vitro 884 

results and establish the in vivo nutritional and anti-parasitic effects associated with contrasting 885 

CT traits. This will also require comparison of forages that have been grazed or processed into 886 

hay, pellets or silages, because CTs become less extractable upon processing, but the 887 

underlying mechanisms and biological significance of these changes are yet to be explored. 888 

Such studies will help to optimize dietary protein utilization, energy partitioning and reduce the 889 

environmental footprint of livestock production. 890 

 891 

We also need answers to the following questions: what effects do CTs exert on intestinal cells in 892 

ruminants and non-ruminants in terms of nutrient absorption and cell signaling cascades, what 893 

are the mechanisms by which CTs protect dietary protein from rumen degradation and affect 894 

amino acid absorption from the intestine (N.B. in the presence of CTs, amino acid absorption 895 

takes place across the entire intestine; however, in the absence of CTs, absorption occurs in the 896 

first third of the intestine (Wang et al., 1996)? What are the effects on the ruminal or colonic 897 

microbiomes, how do CTs impact on recycling of urea-N, modify the utilization of energy and 898 

protein in dairy cows, and what is the origin of higher fecal N outputs in the presence of CTs? 899 

We need to establish the fate and bioactivity of CTs during ensiling and digestion, their 900 

mechanisms of action against parasites along the digestive tract, their effects on the in vivo 901 

immune response, and establish relationships with CT concentation and composition. This 902 
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review has also highlighted the need for analytical methods and CT standards that are fit-for-903 

purpose so that published CT values can be compared between research groups and 904 

experiments. 905 

 906 

Although considerable progress has been achieved over recent years questions remain on how 907 

to translate the research results into practice; e.g.  908 

 909 

• How should we utilize CT forages? Is it better to graze forages with low CT-contents and 910 

use high CT-forages as supplements?  911 

• Can high CT- and CT-free forages be grazed together in strips and could this improve 912 

utilization of dietary protein?  913 

• Can the competitiveness and persistency of CT-containing legumes be increased so they 914 

can be sown together with other crops and achieve successful weed suppression?  915 

• What are the ecological implications of intake and selectivity by different ruminant 916 

species on plant persistence in the field? 917 

• Does an optimum CT concentration and composition exist that can deliver nutritional 918 

plus anti-parasitic effects? According to Cherry et al. (2014) it may be possible to 919 

achieve both; or do we need forages with different CT compositions, i.e. varieties that 920 

either improve protein utilization or possess anti-parasitic effects?  921 

• Will increased use of CT forages generate resistance of parasites to CTs and how can 922 

feeding regimes mitigate against this? 923 
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• Is it best to use a short term supply of high CT-forages for reducing parasite burdens at 924 

strategic times (e.g. pregnancy, parturition, weaning) or should a longer term supply of 925 

low CT-forages be used to boost the immune response? 926 

• What agronomic, harvesting or processing measures can best ensure that CT-plants 927 

deliver consistent results? Which varieties should be grazed, processed into hay, pellets 928 

or silage and at what times of the year?  929 

 930 

From these questions we need to develop practical solutions through collaboration with 931 

farmers and veterinarians. Producers and consumers alike are looking for sustainable 932 

innovations that produce high quality foods profitably whilst also maintaining soil fertility and 933 

the quality of our environment. 934 
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Table 1: Condensed tannin (CT) concentrations (g/100 g dry matter) and compositions of forage 1693 
legumes and selected pasture plants (Note: these studies used various CT assays that were applied 1694 
either to whole plants, isolated extracts or purified CT fractions). 1695 
 1696 

Plant species CT 

concentration 

PC:PD 

ratio 

mDP References 

Erect canary ‘clover’ 

(Dorycnium rectum (L.) 

Ser.) 

15 - 20 5:95 – 
17:83 

10- 
127 

(Sivakumaran et al., 2004) 

Sericea lespedeza 

(Lespedeza cuneata (Dum. 

Cours.) G. Don) 

6 - 13 3:97 33 (Mechineni et al., 2014) 

Panicledleaf ticktrefoil 
(Desmodium paniculatum 

(L.) DC.) 

22 nd nd (Pawelek et al., 2008) 

Sulla (Hedysarum 

coronarium L.) 

2 - 12 11:89 – 
27:73 

3 – 46 (Tibe et al., 2011) 

Big trefoil (Lotus 

pedunculatus Cav.) 

5 - 10 16:84 – 
20:80 

2 - 44 (Sivakumaran et al., 2006; 

Meagher et al., 2004) 

Sainfoin (Onobrychis 

viciifolia Scop.) 

1 - 9 5:95 – 
50:50 

12 to 
84 

(Malisch et al., 2015; Azuhnwi et 

al., 2013a; Stringano et al., 2012; 

Berard et al., 2011) 

Prairie ‘clover’ (Dalea 

purpurea Vent.) 

4 – 9 nd nd (Berard et al., 2011) 

Birdsfoot trefoil (Lotus 

corniculatus L. var. 

corniculatus) 

0 - 5 60:40 – 
84:16 

9 (Grabber et al., 2014; Berard et 

al., 2011; Sivakumaran et al., 

2006; Meagher et al., 2004) 

nd = not determined; PC:PD = procyanidin:prodelphinidin ratio; mDP = mean degree of polymerization 1697 
 1698 
  1699 
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Table 2: Overview of techniques for determining extractable or unextractable tannins and their 1700 
composition.  1701 
 1702 

Analytical 

technique 

Extractable 

CTs 

Unextractable 

CTs 

Information on 

CT composition 
Literature 

HCl-butanol-
acetone 

√ √ Limited (Grabber et al., 2013) 

Thiolysis; 
phloroglucinolysis 

√ √ √ 
(Ramsay et al., 2016; Hixson et 
al., 2015 and 2016; Gea et al., 
2011; Guyot et al., 2001b) 

NMR √ √ √ 
(Zeller et al., 2015a; Grabber 
et al., 2013) 

NIRS √ √ √ 

(Klongsiriwet 2016; Grabber et 
al., 2014; Dykes et al., 2014; 
Larkin et al., 1997; Peterson et 
al., 1991) 

MALDI-TOF MS √ × √ 

(Feliciano et al., 2012; 

Stringano et al., 2011; Krueger 

et al., 2005) 

UPLC-MS/MS √ × √ (Engström et al., 2014) 

Abbreviations: HCl, hydrochloric acid; MALDI TOF MS, matrix assisted laser desorption ionization - time-1703 
of-flight mass spectrometry; NIRS, near-infrared reflectance spectroscopy; NMR, nuclear magnetic 1704 
resonance; UPLC-MS/MS, ultra-performance liquid chromatography tandem mass spectrometry (for 1705 
further information, see Zeller 2017). 1706 
 1707 
  1708 
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Table 3: Plant materials containing condensed tannins (CTs) with structural characteristics that are of 1709 
interest for confering anti-parasitic activities  1710 
 1711 
CT traits Plant species/part Reference 

Prodelphinidin-
rich CTs 

Leaves or peels of hazelnut (Corylus avellana 

L.) seeds, Persian ironwood (Parrotia persica 

(DC.) C.A. Mey.), London plane (Platanus × 

hispanica Mill. ex Münchh. [occidentalis × 

orientalis], black or red currant (Ribes 

nigrum L., R. rubrum L.) bushes, and black 

locust (Robinia pseudoacacia L.); sainfoin 

(Onobrychis viciifolia Scop.), sulla 

(Hedysarum coronarium L.) and sericea 

lespedeza (Lespedeza cuneata (Dum. Cours.) 

G. Don) plants; white clover (Trifolium 

repens L.) flowers; erect canary ‘clover’ 

(Dorycnium rectum (L.) Ser.) 

(Hoste et al., 2016; Ropiak et 
al., 2016a; Mechineni et al., 
2014; Tibe et al., 2011; 
Sivakumaran et al., 2004)  

Galloylated CTs Shea (Vitellaria paradoxa C. F. Gaertn.) nuts, 

persimmon (Diospyros kaki Thunb.) fruits, 

lentisk (Pistacia lentiscus L.) leaves, carob 

(Ceratonia siliqua L.) fruits; grape (Vitis 

vinifera L.) seeds; great water dock (Rumex 

hydrolapathum Huds.) roots; dock (Rumex 

obtusifolius L.) leaves 

(Ramsay et al., 2016; Ropiak 
et al., 2016a; Rodríguez-
Pérez et al., 2013; Li et al., 
2010; Spencer et al., 2007; 
Papagiannopoulos et al., 
2004) 

High mDP-
values 

Erect canary ‘clover’  plant; persimmon 

fruits; apple (Malus domestica Borkh. sp; 

cider varieties); leaves of Persian ironwood, 

London plane, black currant, and black 

locust; white clover flowers; sericea 

lespedeza  plant 

(Hoste et al., 2016; Ropiak et 
al., 2016a; Mechineni et al., 
2014; Li et al., 2010; 
Sivakumaran et al., 2004; 
Guyot et al., 2001a) 

 1712 
  1713 
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Table 4: Variation of nutritional effects achieved with different sainfoin accessions and feeding 1714 
regimes in comparison to two trefoil species and crownvetch forage legumes. 1715 
 1716 

Plant species  

(with information, if 
available, on variety 

or accession and 
method of feeding) 

PC:PD mDP Nutritional effects References 

Sainfoin accessions:     
Visnovsky (dried or 

ensiled) 
19:81 to 

24:76 
16 to 

29 
Lambs: lower apparent organic 
matter and fiber digestibility; 
increased plasma concentration 
of essential amino acids; no effect 
on body N retention 

(Scharenberg et al.,. 

2007; Stringano et al., 

2012; Azuhnwi et al., 

2013b) 

Perly (pellets, 20% of 
basal diet) 

Perly (ensiled with 
timothy grass) 
Perly (ensiled) 

ND 
 

ND 
 

ND 

ND 
 

ND 
 

ND 

No effect on N-retention in dairy 
cows 
Lower growth rate of lambs than 
on red clover mixtures 
CTs had no effect on N retention 
compared to +PEG control 

(Grosse Brinkhaus et 
al., 2016) 
(Copani et al., 2016) 
 
(Theodoridou et al., 
2012) 

Shoshone – grazed ND ND Comparable weight gains by beef 
calves grazing sainfoin and alfalfa 
diets 

(Villalba et al., 2015; 
Maughan et al., 2014) 

Renumex – grazed ND ND Growth rate and slaughter data 
were the same for sainfoin and 
alfalfa of lambs 

(Karnezos et al., 1994) 

No details – fresh 
forage 

ND ND CTs in sulla - but not in sainfoin - 
improved amino acid absorption 
compared to +PEG control 

(Bermingham et al., 
2001) 

Zeus/Esparcette 
(ensiled) 

ND ND Dairy cows: higher milk yield 
compared to grass silage 

(Huyen et al., 2016b) 

UK accessions 
(Sombourne,  

Hampshire,  
Cotswold Common) 

29:71 to 
33:67 

12 to  
32 

Farmers report high growth rates 
of lambs fed UK sainfoin 
accessions (but no accession 
details provided in feeding trial) 

(Stringano et al., 2012; 
Thompson et al., 
1971) 

Fakir - cut and stall-
fed 

ND ND Positive effect on N retention 
compared to rye grass and clover; 
greater recycling and degradation 
of urea; improved utilization of 
recycled N 

(Egan and Ulyatt, 
1980) 

Lotus species:      
Big trefoil 

(Maku – indoor 
trials) 

20:80 ND Reduced growth rate; lower 
apparent digestibility of essential 
amino acids 

(Waghorn, 2008; 
Meagher et al., 2004; 
Min et al., 2003; 
Waghorn et al., 1997) 

Birdsfoot trefoil 
(Goldie – indoor 

84:16 ND Enhanced absorption of essential 
amino acids, positive effects on 

(MacAdam and 
Villalba, 2015; 
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trials; Norcen, 
Oberhaunstadter – 

grazed 

livestock production (increased 
cattle and sheep growth, cow and 
sheep milk yield,  sheep fertility 
and wool growth) 

MacAdam et al., 2011; 
Waghorn, 2008; 
Meagher et al., 2004; 
Waghorn and Shelton, 
1997; Waghorn et al., 
1997) 

Crownvetch:     
Chemung, 
Penngift – 
field cured, 
windrowed, 
baled 

26:74 >13 Larger daily gain of cattle and 
sheep under grazing or stall 
feeding compared to alfalfa or 
sericea lespedeza. 

(Burns et al., 1972 and 
1977) (Note: our CT 
data are unpublished 
and not from the 
plants that were fed) 

ND = not determined; PC:PD, procyanidin:prodelphinidin ratio; mDP, mean degree of polymerization 1717 
 1718 
  1719 
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Legend to Figures 1720 

 1721 

Figure 1.  1722 

Example of a condensed tannin (CT) molecule that consists of four flavan-3-ol subunits (=monomeric 1723 

building blocks). Procyanidins are comprised of catechin or epicatechin and prodelphinidins of 1724 

gallocatechin or epigallocatechin subunits (see Zeller 2017 for further details). 1725 

 1726 

Figure 2:  1727 

The ‘LegumePlus’ project - an interdisciplinary European Union-funded research and training network on 1728 

sainfoin (http://legumeplus.eu). 1729 

 1730 

Figure 3:  1731 

Near-infrared reflectance spectroscopy (NIRS) for predicting CT composition of sainfoin plants that had 1732 

been analysed by thiolysis (Mueller-Harvey et al., 2011; Gea et al., 2011). 1733 

 1734 

Figure 4:  1735 

Average percentages of extractable and unextractable condensed tannins in fresh, pelleted and ensiled 1736 

sainfoin, sulla and birdsfoot trefoil (Ramsay et al., 2015; Lorenz et al., 2010; Minnée et al., 2002). 1737 
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